81 research outputs found

    Building hierarchical structures for 3D scenes with repeated elements

    Get PDF

    Evaluation of gene expression data generated from expired Affymetrix GeneChip® microarrays using MAQC reference RNA samples

    Get PDF
    BACKGROUND: The Affymetrix GeneChip(®) system is a commonly used platform for microarray analysis but the technology is inherently expensive. Unfortunately, changes in experimental planning and execution, such as the unavailability of previously anticipated samples or a shift in research focus, may render significant numbers of pre-purchased GeneChip(®) microarrays unprocessed before their manufacturer’s expiration dates. Researchers and microarray core facilities wonder whether expired microarrays are still useful for gene expression analysis. In addition, it was not clear whether the two human reference RNA samples established by the MAQC project in 2005 still maintained their transcriptome integrity over a period of four years. Experiments were conducted to answer these questions. RESULTS: Microarray data were generated in 2009 in three replicates for each of the two MAQC samples with either expired Affymetrix U133A or unexpired U133Plus2 microarrays. These results were compared with data obtained in 2005 on the U133Plus2 microarray. The percentage of overlap between the lists of differentially expressed genes (DEGs) from U133Plus2 microarray data generated in 2009 and in 2005 was 97.44%. While there was some degree of fold change compression in the expired U133A microarrays, the percentage of overlap between the lists of DEGs from the expired and unexpired microarrays was as high as 96.99%. Moreover, the microarray data generated using the expired U133A microarrays in 2009 were highly concordant with microarray and TaqMan(®) data generated by the MAQC project in 2005. CONCLUSIONS: Our results demonstrated that microarray data generated using U133A microarrays, which were more than four years past the manufacturer’s expiration date, were highly specific and consistent with those from unexpired microarrays in identifying DEGs despite some appreciable fold change compression and decrease in sensitivity. Our data also suggested that the MAQC reference RNA samples, stored at -80°C, were stable over a time frame of at least four years

    Constructing a robust protein-protein interaction network by integrating multiple public databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) are a critical component for many underlying biological processes. A PPI network can provide insight into the mechanisms of these processes, as well as the relationships among different proteins and toxicants that are potentially involved in the processes. There are many PPI databases publicly available, each with a specific focus. The challenge is how to effectively combine their contents to generate a robust and biologically relevant PPI network.</p> <p>Methods</p> <p>In this study, seven public PPI databases, BioGRID, DIP, HPRD, IntAct, MINT, REACTOME, and SPIKE, were used to explore a powerful approach to combine multiple PPI databases for an integrated PPI network. We developed a novel method called <it>k</it>-votes to create seven different integrated networks by using values of <it>k</it> ranging from 1-7. Functional modules were mined by using SCAN, a Structural Clustering Algorithm for Networks. Overall module qualities were evaluated for each integrated network using the following statistical and biological measures: (1) modularity, (2) similarity-based modularity, (3) clustering score, and (4) enrichment.</p> <p>Results</p> <p>Each integrated human PPI network was constructed based on the number of votes (<it>k</it>) for a particular interaction from the committee of the original seven PPI databases. The performance of functional modules obtained by SCAN from each integrated network was evaluated. The optimal value for <it>k</it> was determined by the functional module analysis. Our results demonstrate that the <it>k</it>-votes method outperforms the traditional union approach in terms of both statistical significance and biological meaning. The best network is achieved at <it>k</it>=2, which is composed of interactions that are confirmed in at least two PPI databases. In contrast, the traditional union approach yields an integrated network that consists of all interactions of seven PPI databases, which might be subject to high false positives.</p> <p>Conclusions</p> <p>We determined that the k-votes method for constructing a robust PPI network by integrating multiple public databases outperforms previously reported approaches and that a value of k=2 provides the best results. The developed strategies for combining databases show promise in the advancement of network construction and modeling.</p

    Integrated microRNA, mRNA, and protein expression profiling reveals microRNA regulatory networks in rat kidney treated with a carcinogenic dose of aristolochic acid

    Get PDF
    Background: Aristolochic Acid (AA), a natural component of Aristolochia plants that is found in a variety of herbal remedies and health supplements, is classified as a Group 1 carcinogen by the International Agency for Research on Cancer. Given that microRNAs (miRNAs) are involved in cancer initiation and progression and their role remains unknown in AA-induced carcinogenesis, we examined genome-wide AA-induced dysregulation of miRNAs as well as the regulation of miRNAs on their target gene expression in rat kidney.Results: We treated rats with 10 mg/kg AA and vehicle control for 12 weeks and eight kidney samples (4 for the treatment and 4 for the control) were used for examining miRNA and mRNA expression by deep sequencing, and protein expression by proteomics. AA treatment resulted in significant differential expression of miRNAs, mRNAs and proteins as measured by both principal component analysis (PCA) and hierarchical clustering analysis (HCA). Specially, 63 miRNAs (adjusted p value  1.5), 6,794 mRNAs (adjusted p value  2.0), and 800 proteins (fold change > 2.0) were significantly altered by AA treatment. The expression of 6 selected miRNAs was validated by quantitative real-time PCR analysis. Ingenuity Pathways Analysis (IPA) showed that cancer is the top network and disease associated with those dysregulated miRNAs. To further investigate the influence of miRNAs on kidney mRNA and protein expression, we combined proteomic and transcriptomic data in conjunction with miRNA target selection as confirmed and reported in miRTarBase. In addition to translational repression and transcriptional destabilization, we also found that miRNAs and their target genes were expressed in the same direction at levels of transcription (169) or translation (227). Furthermore, we identified that up-regulation of 13 oncogenic miRNAs was associated with translational activation of 45 out of 54 cancer-related targets.Conclusions: Our findings suggest that dysregulated miRNA expression plays an important role in AA-induced carcinogenesis in rat kidney, and that the integrated approach of multiple profiling provides a new insight into a post-transcriptional regulation of miRNAs on their target repression and activation in a genome-wide scale
    corecore